Affiliation:
1. Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen 518055 China
2. School of Electrical and Electronic Engineering Nanyang Technological University Singapore 639798 Singapore
Abstract
AbstractThe integration of functional fibers into wearable devices by traditional methods is commonly completed in weaving. A new post‐weaving method of integrating fiber devices into textiles is needed to address the challenge of incorporating functional fiber into ready‐made garments without tearing down the clothing and re‐weaving. A 3D printing method to simultaneously fabricate and integrate highly stretchable conductive fiber into ready‐made garments with designed patterns is presented. The fabricated sheath–core fiber consists of a styrene–ethylene–butylene–styrene (SEBS) shell and a Ga–In–Sn alloy liquid metal core. The SEBS shell guarantees the high stretchability (up to 600%) and flexibility, while the liquid metal core offers a high conductivity maintained at large deformation. It is shown that sophisticated patterns, which have millimeter‐level‐resolution that are difficult to be integrated into textiles by weaving, and even more laborious to be incorporated into ready‐made garments, can now be easily modified and implemented into both textiles and ready‐made garments by a time‐saving and low‐cost 3D printing method. Utilizing the electrical characteristics of the fiber in pre‐designed patterns, on‐clothing soft electronics can be printed directly. A printed on‐clothing strain sensor, bending sensor, wireless charging coil, and a touch‐sensing network are demonstrated to show the potential applications in wearable electronics.
Subject
Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献