Large Area Flexible Thin Layer Terahertz Detector

Author:

Song Qi123ORCID,Zhou Yu4,Wang Yifei5,Gao Feilong1,Wang Jiatong2,Zhang Min2,Wang Yiran1,Zhang Bingyuan1,Yan Peiguang2,Dong Bo3

Affiliation:

1. Shandong Key Laboratory of Optical Communication Science and Technology School of Physics Science and Information Technology Liaocheng University Liaocheng 252059 P. R. China

2. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China

3. College of Integrated Circuits and Optoelectronic Chips Shenzhen Technology University Shenzhen 518118 P. R. China

4. North China Institute of Computing Technology Beijing 100083 P. R. China

5. School of Precision Instrument and Opto‐electronics Engineering Tianjin University Tianjin 300072 P. R. China

Abstract

AbstractDue to the low photon energy in the relevant frequency band, fewer materials can directly excite carriers, and an extreme lack of high‐performance, large‐area detectors, limit the promotion, and development of 6G technology. In addition, flexible detectors with the integration of 6G communication and Internet of Things technology has good prospects for application in the development of optoelectronic devices, which are also urgently needed. A large‐area flexible thin layer terahertz detector is designed that combines the advantages of excellent optoelectronic performance in the detection of electromagnetic waves with low photon energy and the localized surface plasmon (LSP) effect in a sub‐wavelength structure detector. Due to the large effective area, the spiral electrode device demonstrates the best performance at room temperature. The noise equivalent power (NEP) and photoresponsivity (RV) are achieved with 0.4 pW Hz−1/2 and 154 MV W−1 at 0.28 THz. In addition, the bending experiments show that the device has extreme advantages for flexible 6G detector applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3