Secondary Order RC Sensor Neuron Circuit for Direct Input Encoding in Spiking Neural Network

Author:

Yang Simiao1,Li Deli1ORCID,Feng Jiuchao1,Gong Binchen1,Song Qing1,Wang Yue1,Yang Zhen1,Chen Yonghua2,Chen Qi3,Huang Wei245

Affiliation:

1. Fujian Provincial Key Laboratory of Flexible Electronics Strait Institute of Flexible Electronics (SIFE Future Technologies) Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE) Fuzhou 350117 China

2. Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) School of Flexible Electronics (Future Technologies) Nanjing Tech University (NanjingTech) Nanjing 211816 China

3. Biomedical Research Center of South China Fujian Normal University Fuzhou 350117 China

4. Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering Northwestern Polytechnical University Xi'an 710072 China

5. Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing 210023 China

Abstract

AbstractIn spiking neural networks (SNNs), artificial sensor neurons are crucial for converting real‐world analog information into encoded spikes. However, existing SNNs face challenges due to the inefficient implementation of input sensor neurons. Here, this study proposes an SNN‐compatible spike mode sensor, designed to directly convert analog current signals into real‐time encoded spikes, feeding the SNN concurrently. The input sensor neuron is realized using a stable neuron circuit employing a threshold switching (TS) memristor and secondary order RC block. This design enables time delay‐free spike firing, operates at low voltage, and offers a wide signal sensing range. Furthermore, this study presents an expression delineating the relationship between the pulse emission properties of the circuit and the parameters of its components, laying the basis for circuit components design and development. Analytical analysis confirms the sensor's efficacy in implementing rate‐based and time‐to‐first spike encoding schemes. Integrating the sensor into SNNs as the input layer for image training and recognition tasks yields an impressive accuracy of 87.58% on the MNIST dataset, showcasing its applicability as a crucial interface between the physical world and the SNN framework.

Funder

National Natural Science Foundation of China

Wuhan National Laboratory for Optoelectronics

Natural Science Basic Research Program of Shaanxi Province

Natural Science Foundation of Fujian Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3