Novel Dielectric Nanogranular Materials with an Electrically Tunable Frequency Response

Author:

Cao Yang12,Kobayashi Nobukiyo23,Wang Cheng2,Takahashi Saburo4,Maekawa Sadamichi56,Masumoto Hiroshi2ORCID

Affiliation:

1. Hubei Key Lab of Ferro and Piezoelectric Materials and Devices Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 P. R. China

2. Frontier Research Institute for Interdisciplinary Sciences Tohoku University Sendai 980–8578 Japan

3. Research Institute for Electromagnetic Materials Tomiya 981‐3341 Japan

4. WPI Advanced Institute for Materials Research Tohoku University Sendai 980‐8577 Japan

5. RIKEN Center for Emergent Matter Science (CEMS) Wako 351‐0198 Japan

6. Kavli Institute for Theoretical Sciences (KITS) University of Chinese Academy of Sciences Beijing 100190 P. R. China

Abstract

AbstractThe electrical modulation of the functionality of matter is of significant interest in physics and multifunctional tunable electronic device applications. Here, new dielectric materials with nanogranular structures comprised of nano‐sized Co granular metals dispersed in a Mg‐fluoride‐based dielectric matrix are explored. The dielectric relaxation frequency (fr), which represents a sharp decrease in dielectric permittivity in dielectrics, can be tuned by a DC electric field (E). As E increases, the position of fr first shifts to the low‐frequency side and then to the high‐frequency side, achieving a tunable fr in a certain frequency range. The ability to electrically modulate the relaxation frequency may help construct novel tunable frequency filters. The dielectric properties are theoretically examined based on the asymmetric electron tunnelling model that considers the size difference of granular pairs, offering an insightful understanding of the structure‐property relationship in disordered granular solids.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3