Affiliation:
1. National Laboratory of Solid‐State Microstructures School of Electronics Science and Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
Abstract
AbstractCatalytic synthesized ultrathin silicon nanowires (SiNWs) are ideal 1D channel materials to fabricate high‐performance transparent and low‐cost thin film transistors (TFTs) that are widely needed for flexible electronics and displays. In this work, a scalable integration of orderly array of SiNW array, with a uniform diameter of only 52 ± 4 nm, grown directly upon glass/wafer substrates, via a guided in‐plane solid–liquid–solid (IPSLS) process, and passivated by a new solution oxidizing/etching cycling technique is demonstrated. This has enabled an all‐low‐temperature (<350 °C) fabrication of high‐performance SiNW‐TFTs, achieving Ion/Ioff current ratio and subthreshold swing (SS) of >106 and 120 mV dec−1 respectively, with excellent negative and positive bias stabilities. Importantly, the SiNW‐TFTs fabricated on glasses with ITO/or metal electrodes demonstrate a high transparency of 90% or 73% respectively, making them ideal candidates for building the next generation of high aperture displays, transparent electronics, and augmented reality applications.
Funder
National Natural Science Foundation of China
Nanjing University
Subject
Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献