High‐Entropy La‐(Bi0.2Na0.2Ba0.2Sr0.2Ca0.2)TiO3 Ceramic with Ultrastable Dielectric Performance within 327–689 K and up to 7 GPa

Author:

Wu Jie12ORCID,Guo Jian3,Ren Yifeng1,Yang Yanping2,Zhang Ziyou2,Dong Hongliang2,Zhang Shan‐Tao3,Chen Zhiqiang2,Deng Yu14ORCID

Affiliation:

1. School of Physics Nanjing University Nanjing 210093 China

2. Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China

3. National Laboratory of Solid State Microstructures Department of Materials Science and Engineering College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China

4. National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China

Abstract

AbstractTo meet the needs of energy storage under high temperature and high pressure, a high‐entropy relaxor ferroelectric ceramic, La‐modified (Bi0.2Na0.2Ba0.2Sr0.2Ca0.2)TiO3 is prepared, which has excellent thermal and mechanical stability. At the wide temperature range of 327–689 K (tan δ < 0.01) and below ≈7 GPa, the material shows extraordinary functional performance. Comprehensive study indicates that the ceramic possesses a single‐phase cubic perovskite structure, and as the pressure increases, the material undergoes a transition at ≈8 GPa, in which enormous large grains crack into smaller grains, but the space group does not change. In addition, with further compression, the grains begin to rotate and re‐orientate at ≈9 GPa. Based on the investigations, it is considered that the suitable doping of multiple cations can effectively improve the stability of ceramics, and it also paves the experimental way to further study thermally and mechanically stable high‐entropy ceramics.

Funder

National Natural Science Foundation of China

NSAF Joint Fund

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3