Microscopic Quantum Transport Processes of Out‐of‐Plane Charge Flow in 2D Semiconductors Analyzed by a Fowler–Nordheim Tunneling Probe

Author:

Shin Dong Hoon1,Lee Duk Hyun2,Choi Sang‐Jun3,Kim Seonyeong24,Kim Hakseong2,Watanabe Kenji5,Taniguchi Takashi5,Campbell Eleanor E. B.16,Lee Sang Wook1ORCID,Jung Suyong2

Affiliation:

1. Department of Physics Ewha Womans University Seoul 03760 Republic of Korea

2. Interdisciplinary Materials Measurement Institute Korea Research Institute of Standards and Science Daejeon 34113 Republic of Korea

3. Institute for Theoretical Physics and Astrophysics University of Wűrzburg D‐97074 Wűrzburg Germany

4. Department of Physics and Astronomy Sejong University Seoul 05006 Republic of Korea

5. Advanced Materials Laboratory National Institute for Materials Science Tsukuba 305‐0044 Japan

6. School of Chemistry University of Edinburgh Edinburgh EH9 3FJ United Kingdom

Abstract

AbstractWeak interlayer couplings at 2D van der Waals (vdW) interfaces fundamentally distinguish out‐of‐plane charge flow, the information carrier in vdW‐assembled vertical electronic and optical devices, from the in‐plane band transport processes. Here, the out‐of‐plane charge transport behavior in 2D vdW semiconducting transition metal dichalcogenides (SCTMD) is reported. The measurements demonstrate that, in the high electric field regime, especially at low temperatures, either electron or hole carrier Fowler–Nordheim (FN) tunneling becomes the dominant quantum transport process in ultrathin SCTMDs, down to monolayers. For few‐layer SCTMDs, sequential layer‐by‐layer FN tunneling is observed to dominate the charge flow, thus serving as a material characterization probe for addressing the Fermi level positions and the layer numbers of the SCTMD films. Furthermore, it is shown that the physical confinement of the electron or hole carrier wave packets inside the sub‐nm thick semiconducting layers reduces the vertical quantum tunneling probability, leading to an enhanced effective mass of tunneling carriers.

Funder

National Research Foundation of Korea

Human Frontier Science Program

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3