Impact of Ionic Species on the Performance of Pedot:PSS‐Based Organic Electrochemical Transistors

Author:

Colucci Renan12ORCID,Feitosa Bianca de Andrade13,Faria Gregório Couto1

Affiliation:

1. Instituto de Física de São Carlos (USP) São Carlos 13566–590 Brazil

2. Department of Molecular Electronics Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

3. Departamento de Engenharia de Materiais Escola de Engenharia de São Carlos (USP) São Carlos 13563‐120 Brazil

Abstract

AbstractThe organic electrochemical transistor (OECT) has received considerable interest in the field of bioelectronics due to its ability to support both ionic and electronic transport. However, the fundamental aspects of the OECT's operation are not yet fully understood. Here, the impact on the performance of poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)‐based OECTs, of a series electrolytes with chloride‐based ions is evaluated, varying their cation counterpart under the extension of the Hofmeister Series. Electrical results are analyzed using the Bernards‐Malliaras and Faria‐Duong models and correlated with quartz crystal microbalance measurements. It is shown that cations with a higher ability of salting‐in, according to the Hofmeister series, swell the channel with higher efficiency. In addition, cations with a higher ability to salt‐out promote smaller modulations in the channel's current, indicating that the ionic transport in the bulk of the channel is directly correlated with the swelling ability of the film. Overall, the results provide a better understanding of the interplay of channel and electrolyte in OECTs and promote guidelines for optimizing materials choice for highly sensitive OECTs.

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3