Complete Selective Switching of Ferroelastic Domain Stripes in Multiferroic Thin Films by Tip Scanning

Author:

Wu Mengjun1234,Wang Xintong234,Sun Fei234,Zhang Xiaoyue234,Zhang Yi234,Liu Linjie234,Chen Weijin1234ORCID,Zheng Yue234

Affiliation:

1. School of Materials Sun Yat‐sen University Shenzhen 518107 China

2. Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices School of Physics Sun Yat‐sen University Guangzhou 510275 China

3. State Key Laboratory of Optoelectronic Materials and Technologies School of Physics Sun Yat‐sen University Guangzhou 510275 China

4. Centre for Physical Mechanics and Biophysics School of Physics Sun Yat‐sen University Guangzhou 510275 China

Abstract

AbstractBiFeO3 is a rare single‐phase multiferroic which shows coupled ferroelectricity, ferroelasticity and antiferromagnetism at room temperature. Many fantastic properties of BiFeO3 are regulated by its domain structure. While (001) rhombohedral BiFeO3 thin films can possibly develop up‐to eight degenerate states of two‐variant 71° ferroelastic domain stripes, complete selective control of all possible switching paths between these states has not yet been achieved. Here, combining phase field simulations and scanning probe microscopy experiments, we demonstrated such a complete selective control. The tip bias and the built‐in field were shown to affect the volume fraction of the 71°, 109° and 180° switched domains in rhombohedral BiFeO3 thin films under single‐point loading. Meanwhile, tip scanning further broke the symmetry of the nucleated domains, leading to different switched domain patterns. We then grew BiFeO3 thin films with a specific two‐variant 71° ferroelastic domain state and showed that such a state could be deterministically switched into the other seven two‐variant domain states by collaborative controlling tip scanning and tip bias in scanning probe microscopy experiments. These results should deepen our current understanding on the domain switching kinetics in BiFeO3 thin films and indicate they are promising platforms for developing configurable electronic and spintronic devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3