Giant Change in Electrical Resistivity Induced by Moderate Pressure in Pt(bqd)2 – First Candidate Material for an Organic Piezoelectronic Transistor (OPET)

Author:

Afanasjevs Sergejs1,Benjamin Helen23,Kamenev Konstantin1,Robertson Neil2ORCID

Affiliation:

1. Centre for Science at Extreme Conditions School of Engineering The University of Edinburgh Edinburgh EH8 9YL UK

2. Eastchem School of Chemistry The University of Edinburgh Edinburgh UK

3. Cambridge Display Technology Ltd. Unit 12 Cardinal Park, Cardinal Way Godmanchester Cambridgeshire UK

Abstract

AbstractThe piezoelectronic transistor (PET) has been proposed to overcome the voltage and clock speed limitations of conventional field‐effect transistors (FET). In a PET, voltage is transduced to stress, which leads to an insulator‐metal transition in a piezo‐resistive (PR) element. Although the simulated switching speeds are promising, the viable candidates proposed so far for the PR layer are rare earth compounds that require several GPa of pressure (P) to metalize, necessitating breakthroughs in transduction mechanism scaling and processing. Here, a PR candidate that metalizes in the 0–300 MPa range – the transition metal complex platinum benzoquinonedioximato (Pt(bqd)2) is demonstrated. Such electrical sensitivity to the application of P arises when the material is grown as a thin film with the preferred needle orientation perpendicular to the substrate. As evidence, a combination of hydrostatic and uniaxial pressure studies is provided. The former studies are produced on the compressed powder pellet in a specially developed piston‐cylinder cell (P‐C cell) under variable temperatures (T) and P. The latter is via thin film deposition and uniaxial resistivity (ρ) measurements and these revealed the high potential of this material for the PET concept.

Funder

Leverhulme Trust

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3