Pressure‐Induced Volumetric Negative Thermal Expansion in CoZr2 Superconductor

Author:

Watanabe Yuto1,Arima Hiroto1,Kawaguchi‐Imada Saori2,Kadobayashi Hirokazu2,Oka Kenta2,Usui Hidetomo3,Matsumoto Ryo4,Takano Yoshihiko4,Kawahata Takeshi5,Kawashima Chizuru5,Takahashi Hiroki5,Yamashita Aichi1,Mizuguchi Yoshikazu1ORCID

Affiliation:

1. Department of Physics Tokyo Metropolitan University 1‐1, Minami–Osawa Hachioji 192‐0397 Japan

2. Japan Synchrotron Radiation Research Institute (JASRI) 1‐1‐1 Koto, Sayo‐cho Sayo‐gun Hyogo 679‐5198 Japan

3. Department of Applied Physics Shimane University Matsue Shimane 690‐8504 Japan

4. International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science Tsukuba Ibaraki 305‐0047 Japan

5. Department of Physics College of Humanities and Sciences Nihon University Setagaya Tokyo 1568550 Japan

Abstract

AbstractThe study investigates the thermal expansion and superconducting properties of a CuAl2‐type (tetragonal) superconductor CoZr2 under high pressures. High‐pressure synchrotron X‐ray diffraction is performed in a pressure range of 2.9 GPa < P < 10.4 GPa, and it is discovered that CoZr2 exhibits volumetric negative thermal expansion (NTE) under high pressures. Although uniaxial positive thermal expansion (PTE) along the a‐axis is observed under ambient pressure, it is suppressed by pressure, whereas a large uniaxial NTE along the c‐axis is maintained under the pressure regime. Because of the combination of the suppressed uniaxial PTE along the a‐axis and uniaxial NTE along the c‐axis, volumetric NTE is achieved under high pressure in CoZr2. The volumetric NTE mechanism is based on the flexible crystal structure caused by the soft Co–Co bond, as observed in the isostructural compound FeZr2, which exhibits a uniaxial NTE along the c‐axis. High‐pressure electrical resistance measurements of CoZr2 are performed and confirm superconductivity at 0.03 GPa < P < 41.9 GPa. Because of the coexistence of the two phenomena, volumetric NTE and superconductivity, in CoZr2 under high pressure, coexistence can be achieved under ambient pressure by tuning the chemical composition after the present observation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3