Effects of Oxygen Plasma Treatment on Fermi‐Level Pinning and Tunneling at the Metal–Semiconductor Interface of WSe2 FETs

Author:

Lee Kwangro1,Ngo Tien Dat1,Lee Sungwon1,Shin Hoseong1,Choi Min Sup2,Hone James3,Yoo Won Jong1ORCID

Affiliation:

1. Department of Nano Science and Technology SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea

2. Department of Materials Science and Engineering Chungnam National University 99, Daehak‐ro, Yuseong‐gu Daejeon 34134 Republic of Korea

3. Department of Mechanical Engineering Columbia University New York NY 10027 USA

Abstract

AbstractRecently, 2D materials have been intensively investigated for their novel nanoelectronic applications; among these materials, tungsten diselenide (WSe2) is attracting substantial research interest due to its high mobility, sizable bandgap, and ambipolar characteristics. However, Fermi‐level pinning (FLP) at the metal–semiconductor contact is a critical issue preventing further integration of WSe2 to complementary metal–oxide–semiconductor (CMOS) technology. In this study, a facile doping method of oxygen (O2) plasma treatment and an aging effect to overcome the FLP of WSe2 field‐effect transistors (FETs) are utilized. After aging, a reduction is observed in FLP on oxidized WSe2 FETs, along with a decrease in pinning factor (S) for holes from −0.06 to −0.36. Further, the field‐effect mobility of high‐ (Pd) and low‐ (In) work‐function contacted WSe2 devices indicates the presence of more improvement in high‐work‐function metal‐contacted p‐type WSe2 FETs, which further strengthens the Fermi level de‐pinning behavior attributed to the O2 plasma and aging processes. The existence of different tunneling behaviors of Pd and In devices also confirms the effect of O2 plasma doping into WSe2 FETs. Ultimately, this work demonstrates a simple and efficient method for achieving the de‐pinning of Fermi‐levels and modulating FLP of 2D FETs.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3