Beyond von Neumann Architecture: Brain‐Inspired Artificial Neuromorphic Devices and Integrated Computing

Author:

Seok Hyunho1ORCID,Lee Dongho2,Son Sihoon1,Choi Hyunbin3,Kim Gunhyoung3,Kim Taesung12ORCID

Affiliation:

1. SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea

2. Department of Mechanical Engineering Sungkyunkwan University Suwon 16419 Republic of Korea

3. Department of Semiconductor Convergence Engineering Sungkyunkwan University Suwon 16419 Republic of Korea

Abstract

AbstractBrain‐inspired parallel computing is increasingly considered a solution to overcome memory bottlenecks, driven by the surge in data volume. Extensive research has focused on developing memristor arrays, energy‐efficient computing strategies, and varied operational mechanisms for synaptic devices to enable this. However, to realize truly biologically plausible neuromorphic computing, it is essential to consider temporal and spatial aspects of input signals, particularly for systems based on the leaky integrate‐and‐fire model. This review highlights the significance of neuromorphic computing and outlines the fundamental components of hardware‐based neural networks. Traditionally, neuromorphic computing has relied on two‐terminal devices such as artificial synapses. However, these suffer from significant drawbacks, such as current leakage and the lack of a third terminal for precise synaptic weight adjustment. As alternatives, three‐terminal synaptic devices, including memtransistors, ferroelectric, floating‐gate, and charge‐trapped synaptic devices, as well as optoelectronic options, are explored. For an accurate replication of biological neural networks, it is vital to integrate artificial neurons and synapses, implement neurobiological functions in hardware, and develop sensory neuromorphic computing systems. This study delves into the operational mechanisms of these artificial components and discusses the integration process necessary for realizing biologically plausible neuromorphic computing, paving the way for future brain‐inspired electronic systems.

Funder

Ministry of Education

Ministry of Trade, Industry and Energy

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brain-Inspired Learning, Perception, and Cognition: A Comprehensive Review;IEEE Transactions on Neural Networks and Learning Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3