A Flexible Wireless sEMG System for Wearable Muscle Strength and Fatigue Monitoring in Real Time

Author:

Gong Qibei12,Jiang Xijun1,Liu Yuxuan1,Yu Min3,Hu Youfan12ORCID

Affiliation:

1. Hunan Institute of Advanced Sensing and Information Technology Xiangtan University Xiangtan Hunan 411105 China

2. Key Laboratory for the Physics and Chemistry of Nanodevices Center for Carbon‐Based Electronics Academy for Advanced Interdisciplinary Studies and School of Electronics Peking University Beijing 100871 China

3. Department of Orthopedics Changsha Central Hospital Changsha Hunan 410004 China

Abstract

AbstractThe detection of surface electromyography (sEMG) signals on the skin has attracted increasing attention because of its ability to monitor muscle conditions in a noninvasive manner and thus possesses great application potential to assess athletic status and training efficiency in real time or to evaluate postoperative muscle rehabilitation conveniently. Here, a flexible wireless sEMG monitoring system that consists of a stretchable sEMG epidermal patch and a flexible printed circuit board to provide real‐time evaluation of muscle strength and fatigue is reported. The epidermal patch is designed to have good stretchability and permeability and optimized to ensure a low contact impedance with the skin and minimized background noise for sEMG signal acquisition with high fidelity. Six commonly used time‐domain and two frequency‐domain features extracted from sEMG signals are systematically analyzed, and a strategy for feature selection and pattern identification is proposed that eventually enables the real‐time assessment of muscle strength and fatigue by using an integrated system in a wearable form.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3