Ultrahigh Performance UV Photodetector by Inserting an Al2O3 Nanolayer in NiO/n‐Si

Author:

Ma Xingzhao123,Tang Libin123ORCID,Jia Menghan234,Zhang Yuping23,Zuo Wenbin23,Cai Yuhua23,Li Rui23,Yang Liqing23,Teng Kar Seng5ORCID

Affiliation:

1. School of Materials and Energy Yunnan University Kunming 650500 China

2. Kunming Institute of Physics Kunming 650223 China

3. Yunnan Key Laboratory of Advanced Photoelectric Materials & Devices Kunming 650223 China

4. School of Physics and Astronomy Yunnan University Kunming 650500 China

5. Department of Electronic and Electrical Engineering Swansea University Bay Campus, Fabian Way Swansea SA1 8EN UK

Abstract

AbstractUltraviolet (UV) photodetectors have gained much attention due to their numerous important applications ranging from environmental monitoring to space communication. To date, most p‐NiO/n‐Si heterojunction photodetectors (HPDs) exhibit poor UV responsivity and slow response. This is mainly due to a small valence band offset (ΔEV) at the NiO/Si interface and a high density of dangling bonds at the silicon surface. Herein, an UV HPD consisting of NiO/Al2O3/n‐Si is fabricated using magnetron sputtering technique. The HPD has a large rectification ratio of 2.4 × 105. It also exhibits excellent UV responsivity (R) of 15.8 A/W at −5 V and and detectivity (D*) of 1.14 × 1013 Jones at −4 V, respectively. The excellent performance of the HPD can be attributed to the defect passivation at the interfaces of the heterojunction and the efficient separation of photogenerated carriers by the Al2O3 nanolayer. The external quantum efficiency (EQE) of the HPD as high as 5.4 × 103%, hence implying a large optical gain due to carrier proliferation resulting from impact ionization. Furthermore, the ultrafast response speed with a rise time of 80 µs and a decay time of 184 µs are obtained.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3