2D Nanosheet Spray Coating for Scalable Processing of High‐Energy‐Density Dielectric Polymer Films

Author:

Shi Mengjiao1,Li Xinhui1,Jiang Yanda1,Li Shuxuan1,Li Baowen1,Zhang Xin12ORCID,Zhang Shujun3,Nan Ce‐Wen4

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Center of Smart Materials and Devices Wuhan University of Technology Wuhan 430070 China

2. International School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 China

3. Institute for Superconducting and Electronic Materials Australia Institute of Innovative Materials University of Wollongong NSW 2500 Australia

4. School of Materials Science and Engineering State Key Lab of New Ceramics and Fine Processing Tsinghua University Beijing 100084 China

Abstract

AbstractDielectric film capacitors with high power density and rapid charge–discharge capability are widely used as key components in modern electronic and electrical systems, and polymers are primary dielectric for film capacitors due to their low cost, flexibility, and ease of processing. Here, a surface engineering approach is reported to improve the energy storage properties of polymer films by directly spray coating 2D nanosheets on the polymer film surface. The spraying of 2D calcium niobate nanosheets on the surface of biaxially oriented polypropylene (BOPP) films leads to remarkably increased breakdown strength and dielectric constant, resulting in a maximum 64% enhancement of energy density compared to the pristine BOPP films. Ultraviolet irradiation is further employed to improve the adhesion of nanosheets to the BOPP film surface, leading to an ultrahigh energy density of 11.6 J cm−3 with a high energy efficiency of 90%, which is the highest energy density ever achieved in polypropylene‐based films. This work provides a universal, cost‐effective, and scalable approach to improve the energy density of dielectric polymer films, which is of great significance for the application of high‐energy‐density polymer films in compact and efficient power systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3