Fundamental Aspects of Conduction in Charged ErMnO3 Domain Walls

Author:

McCartan James1,Turner Patrick W.1,McConville James P. V.1ORCID,Holsgrove Kristina1ORCID,Cochard Charlotte2ORCID,Kumar Amit1ORCID,McQuaid Raymond G. P.1ORCID,Meier Dennis3,Gregg J. Marty1ORCID

Affiliation:

1. Centre for Nanostructured Media School of Mathematics and Physics Queen's University Belfast Belfast BT7 1NN UK

2. Institut des Sciences Chimiques de Rennes Université de Rennes 263 Av. Leclerc Rennes 35700 France

3. Department of Materials Science and Engineering Norwegian University of Science and Technology (NTNU) Trondheim 7491 Norway

Abstract

AbstractIt is now well‐established that ferroelectric domain walls, at which there are discontinuities in polarization, are usually electrically conducting. Yet, there is a dearth of rather basic information on the physics underpinning conductivity. Here, Kelvin Probe Force Microscopy (KPFM)‐based experiments are reported, which allow significant new insights regarding charge transport at domain walls in ErMnO3. In one set of experiments, KPFM is used to spatially map the Hall potential, developed at the surface of polished single crystals. These maps provide direct experimental evidence that n‐type head‐to‐head domain walls arise in otherwise p‐type material. In another set of experiments, the geometry for current flow is restricted, by cutting sub‐micron thick lamellar slices of ErMnO3 (using a Focused Ion Beam microscope). Separate contacts are made to n and p‐type walls and the potential profiles, when driving source‐drain currents, are measured (again using KPFM). Current‐electric field functions showed Ohmic behaviour for p‐type walls, with an intrinsic room temperature conductivity value of ≈0.4Sm−1. The n‐type walls showed non‐Ohmic behaviour and a significantly lower conductivity, supporting the prediction that electrons are in a polaronic state; an upper bound for the room temperature conductivity of the domains themselves is ≈6 × 10−6Sm−1 at 0.1 MVm−1.

Funder

Engineering and Physical Sciences Research Council

H2020 European Research Council

UK Research and Innovation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3