Reversing A Decades‐Long Scaling Law of Dielectric Breakdown using Hydrogen‐Plasma‐Treated HfO2 ReRAM Devices

Author:

Wu Ernest Y.1ORCID,Ando Takashi2,Jamison Paul3

Affiliation:

1. IBM Research Division Essex Junction VT 05452-2003 USA

2. IBM Research Division Yorktown Heights NY 10598-0218 USA

3. IBM Research Division Albany NY 12203-3654 USA

Abstract

AbstractDielectric breakdown (BD) is known to cause component failure in electronic devices and high‐voltage power lines over many decades. In recent years, this failure mechanism has been exploited to intentionally form nanoscale filaments in resistive random‐access‐memory (ReRAM) devices for artificial intelligence (AI). The statistical nature of this failure mechanism, known as the inverse size scaling law based on the weakest‐link theory, dictates the ever‐higher forming voltages for ReRAM devices, in turn, requiring additional peripheral transistors. This law also causes diminishing lifetimes of electronic components for future generations of very‐large‐integrated circuits (VLSI) technology. Currently, the semiconductor industry faces these scaling barriers limiting the miniaturization of both VLSI and AI hardware technology. Here, experimental evidence of a reverse area dependence is presented by introducing an innovative fabrication process with a hydrogen‐plasma‐treated layer in a bilayer HfO2 structure. Using joint order statistics rather than traditional extreme‐value statistics, a physics‐based statistical model is developed in agreement with the experimental data, thus demonstrating that there is no fundamental reason preventing this law from being reversed or altered. These findings will have a significant impact on both technology scaling and fabrication innovation for electronic and/or bioinspired nanomaterials; moreover, stimulate much research in physics, statistics, and reliability.

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3