Affiliation:
1. Neuroelectronics Munich Institute of Biomedical Engineering TUM School of Computation Information and Technology Technical University of Munich Hans‐Piloty‐Str. 1 85748 Garching Germany
2. Medical and Health Informatics Laboratories NTT Research Incorporated 940 Stewart Dr Sunnyvale CA 94085 USA
Abstract
AbstractThin film electronic devices based on flexible biocompatible substrates are desired in various fields such as implants, soft robotics, and wearables, where stretchability is often necessary. Structure‐enabled stretchability in flexible thin films can be achieved by introducing origami‐inspired folds, thereby storing excess material in the out‐of‐plane direction to unfold upon stress. When using vapor‐deposited substrates such as parylene‐C, folds can be introduced prefabrication using molds patterned in repeated grooves and ridges. Here, this work reports the fabrication and parametrization of 10‐µm‐thick stretchable origami parylene‐C electrodes using 3D printed molds. The molds are printed with a sinusoidal pattern and tunable amplitude and slope, with accurate printing results up to 60° steepness. A 160‐nm‐thick gold layer on top of the folded parylene is patterned via laser ablation following the 3D mold shape. Depending on the design parameters, the resulting electrodes maintain functionality until 40%–100% strain. By 3D printing the molds, this technique can fabricate electrodes with complete control of the designed directions of stretchability in a rapid prototyping approach.
Funder
Bundesministerium für Bildung und Forschung
Subject
Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献