Unexpected Piezoresistive Effect, Room‐Temperature Ferromagnetism, and Thermal Stability of 2D β‐CuI Crystals in Reduced Graphene Oxide Membrane

Author:

Peng Bingquan12ORCID,Zhang Quan3,Zhang Yueyu124,Zhao Yimin3,Hou Shengyue12,Yang Yizhou4,Dai Fangfang12,Yi Ruobing3,Chen Ruoyang4,Wang Jun4,Zhang Lei3,Chen Liang5,Zhang Shengli3,Fang Haiping124

Affiliation:

1. Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325000 China

2. Oujiang Laboratory Wenzhou Zhejiang 325000 China

3. MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter School of Physics Xi'an Jiaotong University Xi'an 710049 China

4. School of Physics East China University of Science and Technology Shanghai 200237 China

5. School of Physical Science and Technology Ningbo University Ningbo 315211 China

Abstract

Abstract2D materials are promising nanomaterials for future applications due to their predominant quantum effects and unique properties in optics, electrics, magnetics, and mechanics. However, explorations in unique properties and potential applications of novel 2D materials have been hampered by synthesis and their stability under ambient conditions. Recently, in the graphene, 2D β‐CuI is observed experimentally under ambient conditions. Here, it is shown that this 2D β‐CuI@graphene possesses unexpected piezoresistive effect and room‐temperature ferromagnetism. Moreover, this 2D β‐CuI crystal is likely to be stable in a wide range of temperature, that is, below 900 K. Theoretical studies reveal that the unexpected piezoresistive effect is mainly attributable to the convergence of the electrons on Cu and I atoms to the Fermi level with increasing strain. There is a magnetic moment that is ≈0.97 μB on the edge of β‐CuI nanocrystal created by an iodine vacancy, which is considered the origin of such strong room‐temperature ferromagnetism. Clearly, the 2D β‐CuI@graphene provides a promising nanomaterial in the nano‐sensors with low power consumption pressure and magnetic nano‐devices with a size down to atomic scale. The discovery in the present work will evoke various new 2D nanomaterials with novel properties in nanotechnology, biotechnology, sensor materials, and technologies.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3