Affiliation:
1. National Synchrotron Radiation Laboratory & School of Nuclear Science and Technology University of Science and Technology of China Hefei 230026 China
Abstract
AbstractHow to promote the resistance switching ratio, enlarge the operating temperature range and accelerate the switching speed is at the forefront of ionic gating electronics. Usually, most attention has been paid to materials with metal‐to‐insulator transition (MIT), e.g., VO2 and SmNiO3. Here, Sr‐doped nickelate (Nd0.8Sr0.2NiO3) films which do not exhibit MIT are used for electric field control of H‐doping and to detect the variation of resistance, lattice, and electronic structures. The experimental results directly show a giant resistive switching by more than 105 at the full temperature range (2 K–300 K) and lattice modulation by 3.4%. More importantly, much faster switching speeds can be achieved in Nd0.8Sr0.2NiO3 devices than in nondoped NdNiO3 ones. Such high switching performance is demonstrated to arise from strongly suppressed Ni–O hybridization after H doping. The results of this study provide a new material paradigm for developing energy‐efficient neuromorphic computing. Further, the doping effect on device performance also suggests a novel approach to develop correlated perovskite oxide transistors in order to fulfill practical applications.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Ministry of Science and Technology of the People's Republic of China
Subject
Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献