Comparing the antibacterial activity of chitin nanocrystals with chitin: exploring the feasibility of chitin nanocrystals as novel pesticide nanocarriers in agriculture

Author:

Xiang Shunyu12,Zhang Xiaofeng1,Cao Zhe1,Peng Shiqi1,Xu Jingyun3,Huang Qianqiao1,Huang Jin2,Xu Chen4,Sun Xianchao12ORCID

Affiliation:

1. College of Plant Protection Southwest University Chongqing China

2. Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China

3. Energy College of Science The Pennsylvania State University State College PA USA

4. Chongqing Shizhu Branch China National Tobacco Corporation Chongqing China

Abstract

AbstractBACKGROUNDIn recent years, nanomaterials‐based pesticide carriers have garnered significant attention and sparked extensive research. However, most studies have primarily focused on investigating the impact of physical properties of nanomaterials, such as size and modifiable sites, on drug delivery efficiency of nano‐pesticides. The limited exploration of biologically active nanomaterials poses a significant obstacle to the advancement and widespread adoption of nano‐pesticides. In this study, we prepared chitin nanocrystals (ChNC) based on acid hydrolysis and systematically investigated the differences between nano‐ and normal chitin against plant bacteria (Pseudomonas syringae pv. tabaci). The primary objective was to seek out nanocarriers with heightened biological activity for the synthesis of nano‐pesticides.RESULTSZeta potential analysis, Fourier Transform infrared spectrometry (FTIR), X‐Ray diffraction (XRD), Atomic force microscopy (AFM) and Transmission electron microscopy (TEM) identified the successful synthesis of ChNC. ChNC showcased remarkable bactericidal activity at comparable concentrations, surpassing that of chitin, particularly in its ability to inhibit bacterial biofilm formation. Furthermore, ChNC displayed heightened effectiveness in disrupting bacterial cell membranes, resulting in the leakage of bacterial cell contents, structural DNA damage, and impairment of DNA replication. Lastly, potting experiments revealed that ChNC is notably more effective in inhibiting the spread and propagation of bacteria on plant leaves.CONCLUSIONChNC exhibited higher antibacterial activity compared to chitin, enabling efficient control of plant bacterial diseases through enhanced interaction with bacteria. These findings offer compelling evidence of ChNC's superior bacterial inhibition capabilities, underscoring its potential as a promising nanocarrier for nano‐pesticide research. © 2023 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3