Quantifying rainfall and cloud water interception in upland forests of Norfolk Island

Author:

McJannet David1ORCID,Marano Jordan2,Petheram Cuan3ORCID,Tavener Neil4,Greenwood Derek4

Affiliation:

1. Land and Water CSIRO Dutton Park Queensland Australia

2. Land and Water CSIRO, James Cook University Townsville Queensland Australia

3. Land and Water CSIRO Hobart Tasmania Australia

4. Norfolk Island Water Resources Assessment Team Kingston Norfolk Island

Abstract

AbstractThe higher elevation (>200 m ASL) forests of Norfolk Island are regularly immersed in the clouds and scientific and anecdotal evidence suggests that in addition to rainfall, water is likely to be collected as cloud droplets are intercepted by the forest canopy. This water is likely to be important for the local hydrology and ecology, yet it has never been quantified. To address this, a field measurement campaign was established to measure hydrological inputs to the forest floor at two elevated (290 and 310 m ASL) forest sites in the Norfolk Island National Park over a 524‐day period. Instrumentation included throughfall and stemflow measurement systems and recording rain gauges in the open in nearby clearings. Sites exhibited very high stem density and basal area and delivery of water to the forest floor was dominated by stemflow because of the funnelling characteristics of the dominant palm and pine trees. Both sites showed similar hydrological behaviour with stemflow and throughfall of around 48% and 32% of total atmospheric inputs, respectively. Stemflow contributions of 48% far exceed observations from the literature on cloud‐affected ecosystems which are typically less than 10%. Rainfall rarely occurred in the absence of low‐level cloud and some cloud immersion events lasted for many days with hydrologic inputs continuing for extended periods despite rainfall not being observed in the open. Cloud water interception accounted for approximately 20% of total water input at both sites which is equivalent to 25% extra water on top of rainfall measured in the open. From an island‐wide perspective, the calculated additional hydrological input is only small due to the limited spatial extent of upland forest; however, the additional water is likely to be very important to local hydrological processes and the unique plants, insects and animals which inhabit the upland forests of Norfolk Island.

Funder

Department of Infrastructure, Transport, Regional Development, Communications and the Arts, Australian Government

Publisher

Wiley

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3