Demonstration of a small‐scale power generator using supercritical CO2

Author:

Li Ligeng1,Tian Hua1ORCID,Lin Xin1,Zeng Xianyu1,Wang Yurong1,Zhuge Weilin2,Shi Lingfeng3,Wang Xuan1,Liang Xingyu1,Shu Gequn13ORCID

Affiliation:

1. State Key Laboratory of Engines Tianjin University Tianjin China

2. State Key Laboratory of Automotive Safety and Energy Tsinghua University Beijing China

3. Department of Thermal Science and Energy Engineering University of Science and Technology of China Hefei China

Abstract

AbstractThe supercritical CO2 (sCO2) power cycle could improve efficiencies for a wide range of thermal power plants. The sCO2 turbine generator plays an important role in the sCO2 power cycle by directly converting thermal energy into mechanical work and electric power. The operation of the generator encounters challenges, including high temperature, high pressure, high rotational speed, and other engineering problems, such as leakage. Experimental studies of sCO2 turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction. Unlike most experimental investigations that primarily focus on 100 kW‐ or MW‐scale power generation systems, we consider, for the first time, a small‐scale power generator using sCO2. A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm, and a CO2 transcritical power cycle test loop was constructed to validate the performance of our manufactured generator. A resistant gas was proposed in the constructed turbine expander to solve the leakage issue. Both dynamic and steady performances were investigated. The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm. The maximum total efficiency of the turbo‐generator was 58.98%, which was affected by both the turbine rotational speed and pressure ratio, according to the proposed performance map.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3