A Deep Learning Method Enables Quantitative and Automatic Measurement of Rat Liver Histology in NAFLD

Author:

Fu Yuqiu1ORCID,Zang Deyue2,Lin Baiyou2,He Qiming1,Xie Yujie1,Zhang Baoliang1,Liu Yao2,Jin Yi2,He Yonghong1,Guan Tian1

Affiliation:

1. Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China

2. Shenzhen Institute of Drug Control Shenzhen China

Abstract

ABSTRACTNonalcoholic fatty liver disease (NAFLD) is a prevalent liver disorder affecting approximately 25.2% of the global population, posing risks of liver fibrosis, cancer, and metabolic disturbances. Despite its increasing prevalence, many facets of NAFLD's pathogenesis remain elusive, and there are currently no approved therapeutic drugs, underscoring the critical need for a comprehensive understanding of its pathophysiology to enable early diagnosis and intervention. Experimental animal studies play a pivotal role in elucidating the mechanisms underlying NAFLD and in the exploration of novel pharmacotherapies. Despite the widespread integration of deep learning techniques in human histopathology, their application to scrutinize histological features in animal models warrants exploration. This study presents a pioneering NAFLD assessment system leveraging IFNet and ResNet34 architectures. This automated system adeptly identifies inflammatory cell foci and hepatic steatosis in histopathology sections of rat livers. Remarkably, our approach achieved an impressive 95.6% accuracy in the assessment of hepatic steatosis and 77.7% in the evaluation of inflammation cell foci. By introducing a novel histopathology scoring system, our methodology mitigated subjective variations inherent in traditional pathologist evaluations, concurrently streamlining time and labor costs. This system ensured a standardized and precise assessment of rat liver histology in NAFLD and represented a significant stride toward enhancing the efficiency and objectivity of experimental outcomes.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3