Stochastic Class‐Attention Net to Detect the Breast Carcinoma Subtypes With Test Time Augmentation

Author:

Harshey Vivek1ORCID,Pharwaha Amar Partap Singh1

Affiliation:

1. Electronics and Communication Engineering Department SLIET Longowal Punjab India

Abstract

ABSTRACTDespite advances in medical sciences, breast cancer remains a deadly disease globally, primarily affecting women. Fortunately, studies claim that breast cancer is treatable if diagnosed early. Late diagnoses have poor prognoses and can affect the patient's quality of life. Therefore, a significant research body is dedicated to establishing and identifying the disease at an initial stage. Deep learning (DL) techniques are garnering attention for aiding medical professionals in detecting this disease using histopathology (HP) image modality. The heterogeneous nature of this disease subtypes results in the imbalances of benign and malignant subtypes. From a DL point of view, this becomes an imbalanced problem deserving special care. Unfortunately, current DL‐based techniques do not fully address this issue and suffer from poor metrics and robustness. In this work, we present a DL‐based breast cancer automatic detection system (BCADS) using a novel architecture stochastic class‐attention net (SCAN). This technique performed better when combined with label smoothing and test time augmentation. This work outperforms the previously reported results for binary and multiclass on the BreaKHis dataset. Also, we validated our method on separate BACH and BCNB datasets to prove its effectiveness and clinical relevancy. We hope that the designed BCADS will help the treating doctor and pathologist in a meaningful way and thus help to reduce the impact of this deadly disease.

Publisher

Wiley

Reference46 articles.

1. Breast cancer

2. Origins of breast cancer subtypes and therapeutic implications

3. Biology of breast cancer in young women

4. Molecular biology of breast cancer

5. A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks;Zhou X.;Institute of Electrical and Electronics Engineers Access,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3