Soil C:N and C:P ratios positively influence colonization and development of incubated biocrusts in a sandy desert environment

Author:

Zhao Yang1ORCID,Zhao Yanqiao12,Xu Wenwen12,Wang Nan12

Affiliation:

1. Shapotou Desert Research and Experiment Station Northwest Institute of Eco‐Environment and Resources, Chinese Academy of Sciences Lanzhou People's Republic of China

2. College of Resource and Environment University of Chinese Academy of Sciences Beijing People's Republic of China

Abstract

AbstractOver the past few years, incubated biocrusts (IBSC)—the inoculation of soil/sand with cyanobacteria, moss, and lichen—have become one of the most promising biotechnological strategies for preventing soil erosion and restoring soil function in degraded drylands. Soil nutrient content (C, N, and P) is one of the key factors that influences IBSC colonization and development; however, the effects of soil C:N, C:P, and N:P stoichiometric ratios on the colonization and development of IBSC in desert environments are little known. We used four soil substrates, collected from four areas on the southeastern edge of the Tengger Desert, China, to incubate biocrusts. The four substrates differed in particle size and nutrient content. We flattened the dunes so their sand surfaces were level before covering them with soil substrates. We used a fully factorial design with four soil substrates and with and without biocrust additions, generating a total of 12 different treatments. The soil substrates differed in C, N, and P content and C:N, C:P, and N:P stoichiometric ratios. We measured IBSC coverage and thickness to establish relationships between IBSC characteristics and soil C:N, C:P, and N:P stoichiometric ratios. After 12 months of development, all treatments had significantly more cyanobacteria coverage, lichen coverage, and total coverage of IBSC than did control plots, which had little or no IBSC development. C:N and C:P ratios were significantly positively related to cyanobacteria coverage and total coverage of IBSC. Soil C:N and C:P ratios were mainly controlled by soil C; C limitation was greater than N and P limitation. Our study indicates that increasing initial soil substrate C content to improve C:N and C:P ratios will help the recovery of biocrusts and IBSC colonization. We demonstrate that stoichiometric ratios of soil should be a concern when assessing IBSC restoration treatments and when using IBSC to restore degraded land, especially at large scales.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3