Fabrication and characterization of (PVDF/PEO)/AgBiSe2 polymeric membrane with enhanced visible light photocatalytic performance

Author:

Ismail A. M.1,Nasr R. A.2ORCID,Hameed Talaat A.3

Affiliation:

1. Spectroscopy Department Physics Research Institute, National Research Centre Giza Egypt

2. Department of Water Pollution Research National Research Centre Giza Egypt

3. Solid‐State Physics Department Physics Research Institute, National Research Centre Dokki Giza Egypt

Abstract

AbstractDriven by the visible band gap, silver bismuth selenide (AgBiSe2) was loaded in PVDF/PEO blend to enhance the photodegradation of Maxilon blue dye. AgBiSe2 nanoparticles were successfully synthesized by facile solvothermal approach and then loaded to PVDF/PEO (80/20) by 10, 20, and 30 wt%, by evaporative casting method. The X‐ray results in tandem with the Fourier transform infrared (FTIR) established the successful fabrication of (PVDF/PEO)/x(AgBiSe2) polymer nanocomposites. The X‐ray analysis verified the formation of hexagonal AgBiSe2 of a crystallite size ranging from 14.3 to 23.24 nm. The FT‐IR results manifested an overlap between functional groups that corroborated the interaction between PVDF and PEO. Peaks of the AgSe, and SeO modes confirmed that the nanofiller and PVDF/PEO blend were successfully incorporated. The micrograph images by field emission scanning electron microscope (FESEM) unraveled the high tendency of AgBiSe2 to form a uniform cluster. The optical band gap was found to be a direct band gap of 2.86 eV for 30 wt% AgBiSe2 proving its validity as visible‐light‐driven photocatalysts. The removal percentages of the prepared membrane are 4.1, 59, 82, and 98 for 0, 10%, 20%, and 30% AgBiSe2 after 300 min of irradiation under simulated sunlight at pH 6.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3