Syngas production from thermochemical conversion of mixed food waste: A review

Author:

Yadav Sanjeev1ORCID,Katiyar Priyanka1,Mesfer Mohammed K. Al2,Danish Mohd2

Affiliation:

1. Department of Chemical Engineering Shiv Nadar University Noida India

2. Department of Chemical Engineering King Khalid University Abha Saudi Arabia

Abstract

AbstractLately, the generation of leftover food or cooked food waste has turned out to be a critical issue and its disposal in an environmental friendly way has been a challenge. This food waste is being sent for incineration and landfilling which results in a significant contribution to environmental pollution. Therefore, alternative methods for processing food waste in an environmentally benign way have been explored by many researchers. Thermochemical methods are one of those methods and are found to be promising for not only handling the food waste in an ecological way but also producing renewable energy efficiently in the form of bio‐oil and syngas along with a solid byproduct, that is, biochar. However, the generation of syngas is favored by only two thermochemical processes, fast pyrolysis, and gasification. Some derived processes such as co‐pyrolysis, and co‐gasification can also generate syngas. All these processes for syngas generation differ from each other in terms of process conditions (temperature, reaction agents, and residence time) and syngas quality generated (amount of syngas produced, syngas composition, and heating capacity). Additionally, supercritical water gasification is the latest process developed for processing food waste to generate syngas with much higher hydrogen fraction; however, it produces syngas with less yield and involves high operational costs.This article is categorized under: Sustainable Energy > Bioenergy Emerging Technologies > New Fuels Sustainable Development > Energy‐Water‐Food Nexus

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3