Detection and classification of electroencephalogram signals for epilepsy disease using machine learning methods

Author:

Srinath Rajagopalan1ORCID,Gayathri Rajagopal2

Affiliation:

1. Department of Electronics and Communication Engineering Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology Avadi, Chennai India

2. Department of Electronics and Communication Engineering Sri Venkateswara College of Engineering Pennalur, Sriperumbudur India

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

Reference27 articles.

1. Classification of epileptic EEG signals using time‐delay neural networks and probabilistic neural networks;Goshvarpour A;Int J Inf Eng Electron Business,2013

2. Nonrandomness, nonlinear dependence, and non‐stationarity of electroencephalographic recordings from epilepsy patients;Andrzejak RG;Phys Rev,2012

3. Automated diagnosis of epilepsy using key‐point based local binary pattern of EEG signals;Tiwari A;IEEE J Biomed Health Inform,2016

4. The detection of epileptic seizure signals based on fuzzy entropy

5. Time-Frequency Domain Deep Convolutional Neural Network for the Classification of Focal and Non-Focal EEG Signals

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Landscape of epilepsy research: Analysis and future trajectory;Interdisciplinary Neurosurgery;2024-06

2. Harnessing Machine Learning and Deep Learning for Improved Epileptic Seizure Detection: A Review;Proceedings of the 5th International Conference on Information Management & Machine Intelligence;2023-11-23

3. Comparing EEG-Based Epilepsy Diagnosis Using Neural Networks and Wavelet Transform;Applied Sciences;2023-09-18

4. Classification of electrocardiogram signals using deep learning based on genetic algorithm feature extraction;Biomedical Physics & Engineering Express;2023-07-31

5. Autoencoder-Based iEEG Signal Classification for Accurate Focal and Non-focal Epilepsy Detection;2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3