Computational fluid dynamics study on three‐dimensional polymeric scaffolds to predict wall shear stress using machine learning models for bone tissue engineering applications

Author:

E Sudalai Manikandan1ORCID,M Thirumarimurugan1,A Gnanaprakasam1,M Satthiyaraju2

Affiliation:

1. Department of Chemical Engineering Coimbatore Institute of Technology Coimbatore India

2. Department of Mechanical Engineering Kathir College of Engineering Coimbatore India

Abstract

AbstractGeometrical patterns and dimensions of the polymeric scaffold play a major role in controlling the degradation and mechanical stimuli for osteogenic differentiation. Wall shear stress (WSS) analysis of scaffold provides a better understanding of the body fluid flow dynamics. A computational fluid dynamics (CFD) study was carried out to understand velocity profile and WSS distribution when the strands are arranged in rectangular and triangular pitch for the different strand diameters and spacing. The number of scaffold surfaces with less than 30 mPa and maximum and average WSS was estimated to check the suitability of the scaffold for loading stem cells. This situation is favorable to induce osteogenic activity and cell viability. Higher spacing/pitch between the strands increases the chances of scaffold surface having WSS less than 30 mPa. When the spacing and diameter are smaller, there is no significant variation in WSS and pressure drop between rectangular and triangular pitch arrangement is observed. Machine learning (ML) models were developed to predict WSS distribution and to reduce the computational cost involved in solving the Navier–Stokes equation. XG Boost and support vector machine (SVM) models outperform the other models in predicting the WSS with high R2 and five‐fold cross‐validation accuracy and are helpful in predicting the optimal design parameters of a three‐dimensional scaffold.

Publisher

Wiley

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3