Flame‐assisted ultrafast synthesis of functionalized carbon nanosheets for high‐performance sodium storage

Author:

Chen Chen123ORCID,Yan Dong4,Von Lim Yew2,Liu Lei5,Li Xue Liang2,Chen Junjie1,Li Tian Chen2,Zhu Youyu5,Cai Jiangtao5,Huang Ying1,Zhang Yating5,Yang Hui Ying2ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an China

2. Pillar of Engineering Product Development Singapore University of Technology and Design Singapore Singapore

3. School of Electrical Engineering Xi'an University of Technology Xi'an China

4. International Joint Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics Henan University Kaifeng China

5. College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China

Abstract

AbstractThe unique structural features of hard carbon (HC) make it a promising anode candidate for sodium‐ion batteries (SIB). However, traditional methods of preparing HC require special equipment, long reaction times, and large energy consumption, resulting in low throughputs and efficiency. In our contribution, a novel synthesis method is proposed, involving the formation of HC nanosheets (NS‐CNs) within minutes by creating an anoxic environment through flame combustion and further introducing sulfur and nitrogen sources to achieve heteroatom doping. The effect of heterogeneous element doping on the microstructure of HC is quantitatively analyzed by high‐resolution transmission electron microscopy and image processing technology. Combined with density functional theory calculation, it is verified that the functionalized HC exhibits stronger Na+ adsorption ability, electron gain ability, and Na+ migration ability. As a result, NS‐CNs as SIB anodes provide an ultrahigh reversible capacity of 542.7 mAh g−1 at 0.1 A g−1, and excellent rate performance with a reversible capacity of 236.4 mAh g−1 at 2 A g−1 after 1200 cycles. Furthermore, full cell assembled with NS‐CNs as the can present 230 mAh g−1 at 0.5 A g−1 after 150 cycles. Finally, in/ex situ techniques confirm that the excellent sodium storage properties of NS‐CNs are due to the construction of abundant active sites based on the novel synthesis method for realizing the reversible adsorption of Na+. This work provides a novel strategy to develop novel carbons and gives deep insights for the further investigation of facile preparation methods to develop high‐performance carbon anodes for alkali‐ion batteries.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3