How can needle ice transport large stones? Twenty‐one years of field observations

Author:

Matsuoka Norikazu12ORCID

Affiliation:

1. College of Education Ibaraki University Mito Japan

2. Faculty of Life and Environmental Sciences University of Tsukuba Tsukuba Japan

Abstract

AbstractDownslope movements of 12 stones (10–27 cm in diameter) were determined from time‐series images for 21 years on a Japanese alpine debris slope (inclination 12°). The process of stone movements was analysed on the basis of frost heave and soil temperature records, with particular attention to the stone size transported by needle ice and the effect of climate change on stone movements. Soil heaving mainly due to needle‐ice growth occurred 24–85 times yr−1 with an annual maximum and cumulative amounts of 1.8–5.5 cm and 17–58 cm yr−1, respectively. Stones moved downslope at rates of 5–20 cm yr−1 (mean 11.7 cm), the velocity correlating with the stone size, although small stones with a height of less than about 3 cm do not reduce needle‐ice activity very much. On an assumption of a linear relationship between the two variables, needle ice can transport stones with a diameter of as large as 30 cm. Both annual mean air/soil temperatures and needle‐ice activity slightly increased through the monitoring period. Climatic warming may have raised the frequency of needle ice by shortening the snow‐covered period.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3