Affiliation:
1. School of Mathematical Sciences Zhejiang University Hangzhou China
2. School of Statistics Hangzhou City University Hangzhou China
3. School of Statistics and Mathematics Zhejiang Gongshang University Hangzhou China
Abstract
AbstractIn recent years, the semiparametric methods for the joint estimation and prediction of value at risk (VaR) and expected shortfall (ES) have triggered great interests and attention. Compared to existing literature which usually incorporates realized volatility (RV) into the dynamic semiparametric risk models, this paper considers three more robust proxies (medRV, BPV, and RK) of intraday volatility in the models to verify whether high‐frequency information can improve the joint prediction ability of risk measures. To strengthen the persuasion of conclusions, four international stock indices (S&P500, Nikkei225, GDAXI, and DJIA) are applied to these models to estimate and forecast VaR and ES at different probability levels (1%, 2.5%, 5%, and 10%). Then, the predicted VaR and ES are backtested by several methods individually, and the popular score function FZ0 and MCS test are used to compare the effects of jointly predicting risk measures. Our results confirm that these semiparametric models containing intraday information outperform the benchmark models for four stocks and various probability levels, and medRV is the best volatility measure in improving the effects of models.
Funder
National Social Science Fund of China