The impact of variations in subject geometry, respiration and coil repositioning on the specific absorption rate in parallel transmit abdominal imaging at 7 T

Author:

Doran Emma12,Naim Iyad1,Bowtell Richard1,Gowland Penny A.1,Glover Paul M.1,Bawden Stephen13ORCID

Affiliation:

1. Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy University of Nottingham Nottingham UK

2. Department of Clinical Physics and Bioengineering NHS Greater Glasgow & Clyde Glasgow UK

3. NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust University of Nottingham Nottingham UK

Abstract

AbstractParallel transmit MRI at 7 T has increasingly been adopted in research projects and provides increased signal‐to‐noise ratios and novel contrasts. However, the interactions of fields in the body need to be carefully considered to ensure safe scanning. Recent advances in physically flexible body coils have allowed for high‐field abdominal imaging, but the effects of increased variability on energy deposition need further exploration. The aim of this study was to assess the impact of subject geometry, respiration phase and coil positioning on the specific absorption rate (SAR). Ten healthy subjects (body mass index [BMI] = 25 ± 5 kg m−2) were scanned (at 3 T) during exhale breath‐hold and images used to generate body models. Seven of these subjects were also scanned during inhale. Simplifications of the coil and body models were first explored, and then finite‐difference time‐domain simulations were run with a typical eight‐channel parallel transmit coil positioned over the abdomen. Simulations were used to generate 10 g averaged SAR (SAR10g) maps across 100,000 phase settings, and the worst‐case scenario 10 g averaged SAR (wocSAR10g) was identified using trigonometric maximisation. The average maximum SAR10g across the 10 subjects with 1 W input power per channel was 1.77 W kg−1. Hotspots were always close to the body surface near the muscle wall boundary. The wocSAR10g across the 10 subjects ranged from 2.3 to 3.2 W kg−1 and was inversely correlated to fat volume percentage (R = 8) and BMI (R = 0.6). The coefficient of variation values in SAR10g due to variations in subject geometry, respiration phase and realistic coil repositioning were 12%, 4% and 12%, respectively. This study found that the variability due to realistic coil repositioning was similar to the variability due to differing healthy subject geometries for abdominal imaging. This is important as it suggests that population‐based modelling is likely to be more useful than individual modelling in setting safe thresholds for abdominal imaging.

Publisher

Wiley

Subject

Spectroscopy,Radiology, Nuclear Medicine and imaging,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3