Using Raman spectroscopy to detect scytonemin of epiliths and endoliths from marble, serpentinite and gypsum

Author:

Jehlička Jan1ORCID,Culka Adam1ORCID,Němečková Kateřina1ORCID,Mareš Jan23ORCID

Affiliation:

1. Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science Charles University Prague Czech Republic

2. Biology Centre of the Czech Academy of Sciences Institute of Hydrobiology České Budějovice Czech Republic

3. Center Algatech, Institute of Microbiology The Czech Academy of Sciences Třeboň Czech Republic

Abstract

AbstractHere, we present Raman spectra showing the presence and distribution of scytonemin and carotenoids in epilithic and endolithic colonisations from temperate locations in Central Europe and Sicily. In the Bohemian Massif, marble and serpentinitic cyanobacterial epiliths dominated by cyanobacteria Scytonema, Stigonema, Hassallia, Gloeocapsopsis and Gloeocapsa were investigated using light microscopy and Raman spectroscopy. Scytonemin was a common dark pigment, accompanied by carotenoids and gloeocapsin on the marbles from Opolenec and on serpentinites from Holubov (South Bohemia). Raman spectra from other sites originated from endolithic colonisations of gypsum. They were located in the Carpathian foredeep (Badenian, Silesian unit, eastern Poland) and in Messinian complexes in the Mediterranean area (Sicily). Similarly to the previous localities, almost ubiquitous occurrence of scytonemin confirmed the presence of cyanobacterial colonisations. Obtained findings are important from the spectroscopic point of view. Additionally, comparing results from several sites confirmed the common occurrence of scytonemin in both endoliths and epiliths from areas that cannot be considered climatically extreme, although they experience rapid fluctuations in temperature, humidity and UV irradiation on the exposed rocky substrates.

Funder

Grantová Agentura České Republiky

Center for Geosphere Dynamics, Charles University

Publisher

Wiley

Subject

Spectroscopy,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GeoRaman 2022;Journal of Raman Spectroscopy;2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3