MiR-17 Modulates Osteogenic Differentiation Through a Coherent Feed-Forward Loop in Mesenchymal Stem Cells Isolated from Periodontal Ligaments of Patients with Periodontitis

Author:

Liu Yali123,Liu Wenjia12,Hu Chenghu24,Xue Zengfu5,Wang Guang12,Ding Bofu2,Luo Hailang24,Tang Liang24,Kong Xiangwei12,Chen Xiaoyan12,Liu Na2,Ding Yin1,Jin Yan24

Affiliation:

1. Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China

2. Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China

3. Department of Orthodontics, School of Stomatology, KunMing Medical College, Kunming, China

4. Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, China

5. Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China

Abstract

Abstract Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis, are the most common causes of bone tissue destruction. Recently, human periodontal ligament tissue-derived mesenchymal stem cells (PDLSCs), a population of multipotent stem cells, have been used to reconstruct tissues destroyed by chronic inflammation. However, the impact of the local inflammatory microenvironment on tissue-specific stem cells and the mechanisms controlling the effects of the local inflammatory environment remain poorly understood. In this study, we found that the multidifferentiation potential of mesenchymal stem cells (MSCs) isolated from periodontitis-affected periodontal ligament tissue (P-PDLSCs) was significantly lower than that of MSCs isolated from healthy human periodontal ligament tissue (H-PDLSCs). Inflammation in the microenvironment resulted in an inhibition of miR-17 levels, and a perturbation in the expression of miR-17 partly reversed the differentiation potential of PDLSCs in this microenvironment. Furthermore, inflammation in the microenvironment promoted the expression of Smad ubiquitin regulatory factor one (Smurf1), an important negative regulator of MSC osteogenic differentiation. Western blotting and 3′ untranslated regions (3′-UTR) reporter assays confirmed that Smurf1 is a direct target of miR-17 in PDLSCs. Our data demonstrate that excessive inflammatory cytokine levels, miR-17, and Smurf1 were all involved in a coherent feed-forward loop. In this circuit, inflammatory cytokines led to direct activation of Smurf1 and downregulation of miR-17, thereby increasing degradation of Smurf1-mediated osteoblast-specific factors. The elucidation of the molecular mechanisms governing MSC osteogenic differentiation in a chronic inflammatory microenvironment could provide us with a better knowledge of chronic inflammatory disorder and improve stem cell-mediated inflammatory bone disease therapy.

Funder

Nature Science Foundation of China

National Basic Research Program

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3