Tannic acid extracted from gallnut improves intestinal health with regulation of redox homeostasis and gut microbiota of weaned piglets

Author:

Deng Zhang‐Chao1,Wang Jie1,Wang Juan12,Yan Yi‐Qin1,Huang Yu‐Xuan1,Chen Chi‐Qing3,Sun Lv‐hui1ORCID,Liu Meng1

Affiliation:

1. State Key Laboratory of Agricultural Microbiology Hubei Hongshan Laboratory College of Animal Science and Technology Huazhong Agricultural University Wuhan Hubei China

2. Newhope Liuhe Co. Ltd. Beijing China

3. Wufeng Chicheng Biotech Co., Ltd. Yichang Hubei China

Abstract

AbstractThe objective of this study is to evaluate the effects of tannic acid (TA) derived from gallnut supplementation on growth performance and health status of weaned piglets. A total of 432 weanling piglets (7.05 ± 1.05 kg) were randomly allocated into 4 treatment groups with 6 replicates of 18 pigs/pen. Piglets were fed either a basal diet (CON), or basal diets supplemented with 1.5 kg/t TA, 3.0 kg/t TA, or 1.8 kg/t zinc oxide (ZnO) for 21 days. The results showed that, compared to the CON, dietary TA supplementation did not affect (p > 0.05) growth performance and serum biochemistry of weaned piglets. However, 3.0 kg/t TA had higher SOD, GPX, and CAT activities and a lower MDA concentration in the jejunum than those of the CON or the ZnO group. Meanwhile, 3.0 kg/t TA increased (p < 0.05) villus height and villus height/crypt depth, and decreased (p < 0.05) crypt depth in the small intestine. Dietary TA also downregulated (p < 0.05) IL‐1β and TNF‐α expression in jejunum. Furthermore, 3.0 kg/t TA reduced (p < 0.05) the abundance of Candidatus Brocadia and Escherichia‐Shigella in cecal digesta. Notably, both Candidatus Brocadia and Escherichia‐Shigella had a negative correlation with antioxidant enzymes activities (R < −0.60, p < 0.01), but Escherichia‐Shigella was positively correlated with MDA concentrations (R = 0.44, p < 0.05) in the jejunum. In conclusion, compared to the CON, 3.0 kg/t TA supplementation improved the gut health status of weaned piglets, potentially by regulating redox homeostasis and gut microbiota.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3