Insights into the pathogenesis of primary hyperoxaluria type I from the structural dynamics of alanine:glyoxylate aminotransferase variants

Author:

Vankova Pavla1,Pacheco‐Garcia Juan Luis2,Loginov Dmitry S.3,Gómez‐Mulas Atanasio2,Kádek Alan3ORCID,Martín‐Garcia José Manuel4,Salido Eduardo5,Man Petr3ORCID,Pey Angel L.6ORCID

Affiliation:

1. Institute of Biotechnology – BioCeV Academy of Sciences of the Czech Republic Vestec Czech Republic

2. Departamento de Química Física Universidad de Granada Spain

3. Institute of Microbiology – BioCeV Academy of Sciences of the Czech Republic Vestec Czech Republic

4. Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera Spanish National Research Council (CSIC) Madrid Spain

5. Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias Universidad de la Laguna Tenerife Spain

6. Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología Universidad de Granada Spain

Abstract

Primary hyperoxaluria type I (PH1) is caused by deficient alanine:glyoxylate aminotransferase (AGT) activity. PH1‐causing mutations in AGT lead to protein mistargeting and aggregation. Here, we use hydrogen‐deuterium exchange (HDX) to characterize the wild‐type (WT), the LM (a polymorphism frequent in PH1 patients) and the LM G170R (the most common mutation in PH1) variants of AGT. We provide the first experimental analysis of AGT structural dynamics, showing that stability is heterogeneous in the native state and providing a blueprint for frustrated regions with potentially functional relevance. The LM and LM G170R variants only show local destabilization. Enzymatic transamination of the pyridoxal 5‐phosphate cofactor bound to AGT hardly affects stability. Our study, thus, supports that AGT misfolding is not caused by dramatic effects on structural dynamics.

Funder

European Regional Development Fund

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

Wiley

Subject

Cell Biology,Genetics,Molecular Biology,Biochemistry,Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3