Affiliation:
1. Department of Chemistry and Molecular Biology University of Gothenburg Sweden
2. Department of Microbiology and Immunology, Institute of Biomedicine University of Gothenburg Sweden
Abstract
Arsenite causes proteotoxicity by targeting nascent proteins for misfolding and aggregation. Here, we assessed how selected yeast chaperones and ubiquitin ligases contribute to proteostasis during arsenite stress. Loss of the ribosome‐associated chaperones Zuo1, Ssz1, and Ssb1/Ssb2 reduced global translation and protein aggregation, and increased arsenite resistance. Loss of cytosolic GimC/prefoldin function led to defective aggregate clearance and arsenite sensitivity. Arsenite did not induce ribosomal stalling or impair ribosome quality control, and ribosome‐associated ubiquitin ligases contributed little to proteostasis. Instead, the cytosolic ubiquitin ligase Rsp5 was important for aggregate clearance and resistance. Our study suggests that damage prevention, by decreased aggregate formation, and damage elimination, by enhanced aggregate clearance, are important protective mechanisms that maintain proteostasis during arsenite stress.
Subject
Cell Biology,Genetics,Molecular Biology,Biochemistry,Structural Biology,Biophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献