Computational exploration of the copper(I)‐catalyzed conversion of hydrazones to dihalogenated vinyldiazene derivatives

Author:

Askerova Ulviyya1,Abdullayev Yusif234ORCID,Shikhaliyev Namiq1,Maharramov Abel1,Nenajdenko Valentine G.5,Autschbach Jochen6

Affiliation:

1. Organic Chemistry Department Baku State University Baku Azerbaijan

2. Department of Chemical Engineering Baku Engineering University Baku Azerbaijan

3. Institute of Petrochemical Processes Azerbaijan National Academy of Sciences Baku Azerbaijan

4. Department of Chemistry Sumgait State University Sumgait Azerbaijan

5. Department of Chemistry M. V. Lomonosov Moscow State University Moscow Russia

6. Department of Chemistry University at Buffalo, State University of New York Buffalo New York USA

Abstract

AbstractThis computational study explores the copper (I) chloride catalyzed synthesis of (E)‐1‐(2,2‐dichloro‐1‐phenylvinyl)‐2‐phenyldiazene (2Cl‐VD) from readily available hydrazone derivative and carbon tetrachloride (CCl4). 2Cl‐VD has been extensively utilized to synthesize variety of heterocyclic organic compounds in mild conditions. The present computational investigations primarily focus on understanding the role of copper (I) and N1,N1,N2,N2‐tetramethylethane‐1,2‐diamine (TMEDA) in this reaction, TMEDA often being considered a proton scavenger by experimentalists. Considering TMEDA as a ligand significantly alters the energy barrier. In fact, it is only 8.3 kcal/mol higher compared to the ligand‐free (LF) route for the removal of a chlorine atom to form the radical ·CCl3 but the following steps are almost barrierless. This intermediate then participates in attacking the electrophilic carbon in the hydrazone. Crucially, the study reveals that the overall potential energy surface is thermodynamically favorable, and the theoretical turnover frequency (TOF) value is higher in the case of Cu(I)‐TMEDA complex catalyzed pathway.

Funder

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3