Experimental study on the outburst potential energy caused by added water under stepwise depressurization

Author:

Li Xinjian123,Chen Xiangjun145,Wang Lin1,Shi Haoyang1,Yu Tongyong23

Affiliation:

1. State Key Laboratory Cultivation Base for Gas Geology and Gas Control Henan Polytechnic University Jiaozuo China

2. State Key Laboratory of Gas Detecting, Preventing and Emergency Controlling Chongqing China

3. China Coal Technology and Engineering Group, Chongqing Research Institute Chongqing China

4. State Collaborative Innovation Center of Coal Work Safety and Clean‐Efficiency Utilization Henan Polytechnic University Jiaozuo China

5. College of Safety Science and Engineering Henan Polytechnic University Jiaozuo China

Abstract

AbstractThe research on the mechanism of coal and gas outburst is still in the hypothesis stage, and exploration of the outburst mechanism fro m an energy perspective often focuses on the calculation of coal rock elastic energy and gas expansion energy. There are some studies on elastic energy and gas expansion energy of coal rock caused by added water during outburst, although hydr aulic measures not only improve the permeability of coal seam, but also increase the water content. For calculating the gas expansion energy, the atmospheric gas desorption characteristic is generally utilized, while the gas desorption is completed on the condition of dropping pressure in outburst, and the expansion energy research, based on that law, inevitably brings about errors, thus affecting the objectivity of the potential research. In this study, uniaxial cyclic loading experiments were carried out on briquette coal samples with water content of 0%, 1%, 2% and 4%, whose elastic energy density was analyzed, in addition to examining how the added water affected the mechanical properties and the elastic energy of coal. The pressure drop gradient of the experiment is set 2.5 –2 MPa, 1.5 –1 MPa, 0.5 MPa‐0 Pa. By stepwise depressurization desorption of coal samples after water injection, the gas expansion energy in different moisture is measured in each pressure drop stage, and the influence of moisture on gas expansion energy is quantitatively explored. Research has shown that the higher the water content, the lower the elastic energy density, while the higher the stress, the greater the elastic energy of coal. The gas expansion energy grows linearly with the increase of adsorption equilibrium pressure and diminishes in negative exponential law with the increasing moisture. Under the experimental conditions, the expansion energy decreases by 7%–9% and the elastic energy by 9.7% on average for every 1% increase in added water, and the influence gradually weakens when the moisture exceeds the critical value. This study innovatively simulates the pressure swing desorption when a coal and gas outburst occurs in the laboratory, confirms the critical moisture that affects the outburst potential, and is a useful exploration in the coal and gas outburst mechanism. Significantly the research results can guide the engineering practice when using hydraulic measures to prevent and control outburst disasters. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Environmental Chemistry,Environmental Engineering

Reference32 articles.

1. Temporospatial evolution of gas pressure during coal and gas outburst;Zhang C;Rock Soil Mech,2017

2. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China;Wang E;J China Coal Soc,2022

3. Mechanism investigation on coal and gas outburst: An overview

4. Mechanism and classification of coal and gas outbursts in China;Zhang Q;Adv Civ Eng,2021

5. A new combination model for delay outburst of coal and gas

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3