Weakly supervised learning‐based 3D bladder reconstruction from 2D ultrasound images for bladder volume measurement

Author:

Peng Zhao12,Shan Hongming34,Yang Xiaoyu12,Li Shuzhou12,Tang Du12,Cao Ying12,Shao Qigang12,Huo Wanli5,Yang Zhen12

Affiliation:

1. Department of Oncology, Xiangya Hospital Central South University Changsha China

2. National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha China

3. Institute of Science and Technology for Brain‐inspired Intelligence and MOE Frontiers Center for Brain Science Fudan University Shanghai China

4. Shanghai Center for Brain Science and Brain‐inspired Technology Shanghai China

5. Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province College of Information Engineering China Jiliang University Hangzhou China

Abstract

AbstractBackgroundAccurate measurement of bladder volume is necessary to maintain the consistency of the patient's anatomy in radiation therapy for pelvic tumors. As the diversity of the bladder shape, traditional methods for bladder volume measurement from 2D ultrasound have been found to produce inaccurate results.PurposeTo improve the accuracy of bladder volume measurement from 2D ultrasound images for patients with pelvic tumors.MethodsThe bladder ultrasound images from 130 patients with pelvic cancer were collected retrospectively. All data were split into a training set (80 patients), a validation set (20 patients), and a test set (30 patients). A total of 12 transabdominal ultrasound images for one patient were captured by automatically rotating the ultrasonic probe with an angle step of 15°. An incomplete 3D ultrasound volume was synthesized by arranging these 2D ultrasound images in 3D space according to the acquisition angles. With this as input, a weakly supervised learning‐based 3D bladder reconstruction neural network model was built to predict the complete 3D bladder. The key point is that we designed a novel loss function, including the supervised loss of bladder segmentation in the ultrasound images at known angles and the compactness loss of the 3D bladder. Bladder volume was calculated by counting the number of voxels belonging to the 3D bladder. The dice similarity coefficient (DSC) was used to evaluate the accuracy of bladder segmentation, and the relative standard deviation (RSD) was used to evaluate the calculation accuracy of bladder volume with that of computed tomography (CT) images as the gold standard.ResultsThe results showed that the mean DSC was up to 0.94 and the mean absolute RSD can be reduced to 6.3% when using 12 ultrasound images of one patient. Further, the mean DSC also was up to 0.90 and the mean absolute RSD can be reduced to 9.0% even if only two ultrasound images were used (i.e., the angle step is 90°). Compared with the commercial algorithm in bladder scanners, which has a mean absolute RSD of 13.6%, our proposed method showed a considerably huge improvement.ConclusionsThe proposed weakly supervised learning‐based 3D bladder reconstruction method can greatly improve the accuracy of bladder volume measurement. It has great potential to be used in bladder volume measurement devices in the future.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3