Reaction acceleration in microdroplet mass spectrometry: Inlet capillary and solvent composition effects

Author:

Ju Yun123,He Yuwei1,Kan Guangfeng1,Yu Kai12,Jiang Jie12,Wang Xiaofei1,Zhang Hong12ORCID

Affiliation:

1. School of Marine Science and Technology Harbin Institute of Technology at Weihai Weihai Shandong 264209 China

2. State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology Harbin China

3. School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China

Abstract

RationaleMicrodroplet chemistry has attracted tremendous interest in recent years. We have previously reported that microdroplet mass spectrometry (MS) achieves reaction acceleration. Here we systematically investigated the effect of capillary heating of MS inlet and solvent polarity of microdroplets on the conversion ratios of dehydration and phosphorylation reactions.MethodsThe micron‐sized droplets generated by high‐speed gas encapsulated the compounds. The conversion ratios of dehydration and phosphorylation reactions were investigated at different capillary temperatures of MS inlet between 30°C and 300°C. Subsequently, the effects of solvent polarity of different microdroplets (acetonitrile, acetonitrile/water [v/v: 9:1], and water) on microdroplet reactions were investigated.ResultsThe microdroplets could be used as reaction vessels for rapid dehydration and phosphorylation reactions. Microdroplet MS is characterized by the completion of the reaction in microseconds. The increase in capillary temperature increased the conversion ratio of dehydration reactions but had little effect on phosphorylation reactions. The stability of compounds supports this phenomenon. In addition, the increase in solvent polarity in microdroplets promoted the dehydration reaction but inhibited the nucleophilic substitution reaction (phosphorylation reaction).ConclusionsMicrodroplet MS achieved an acceleration of the reaction, which was attributed to capillary temperature, microdroplet solvents, and the stability of reaction products. This finding suggested that the inlet capillary and solvent system should be considered in the study and interpretation of microdroplet MS.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Organic Chemistry,Spectroscopy,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3