Global attractors for porous elastic system with memory and nonlinear frictional damping

Author:

Duan Yu‐Ying1,Xiao Ti‐Jun1ORCID

Affiliation:

1. Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences Fudan University Shanghai China

Abstract

This paper is concerned with the long‐time behavior of a porous‐elastic system with infinite memory and nonlinear frictional damping. We prove that the dynamical system generated by the solutions of the equations is dissipative, only under the basic conditions (for the well‐posedness) on the memory kernel and the frictional damping . Further, we come up with a condition on , being more general than the usual one (with a positive constant ), under which we prove the asymptotic smoothness and quasi‐stability (the latter needs some stronger condition on ) of the dynamical system. Accordingly, we obtain the existence of a global attractor and show the finite dimensionality of the attractor.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3