Identification of Nonepithelial Multipotent Cells in the Embryonic Olfactory Mucosa

Author:

Tomé Mercedes1,Lindsay Susan L.1,Riddell John S.2,Barnett Susan C.1

Affiliation:

1. Division of Clinical Neuroscience, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland

2. Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland

Abstract

Abstract Olfactory mucosal (OM) tissue, a potential source of stem cells, is currently being assessed in the clinic as a candidate tissue for transplant-mediated repair of spinal cord injury. We examined the ability of embryonic rat OM tissue to generate stem cells using culture conditions known to promote neural stem cell proliferation. Primary spheres formed that proliferated and exhibited two main morphologies: (a) CNS neurosphere-like (OM-I) and (b) small, tight spheroid-like (OM-II). The OM-I spheres expressed the neural stem cell marker nestin but also markers of peripheral glia, neurons, and connective tissue. Further studies demonstrated the presence of multipotential mesenchymal-like stem cells within OM-I spheres that differentiated into bone, adipose, and smooth muscle cells. In contrast, the OM-II spheres contained mainly cytokeratin-expressing cells. Immunolabeling of rat olfactory tissue with Stro-1, CD90, and CD105 showed the presence of multipotent mesenchymal cells in the lamina propria, whereas cytokeratin was expressed by the epithelial cells of the olfactory epithelium. In addition, a comparable pattern of immunoreactivity was detected in human tissue using Stro-1 and cytokeratin, suggesting the presence of similar cells in this tissue. The identification of a nonepithelial multipotent cell in the OM may explain the varied reports on olfactory stem cell differentiation capacity in vitro and in vivo and illustrates the cellular complexity of this tissue as a potential source of stem cells for transplantation and translation to the clinic. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3