LKB1 and CRMP1 cooperatively promote the repair of the sciatic nerve injury

Author:

Liu Yang12,Xu You‐jia12ORCID

Affiliation:

1. Department of Orthopaedics The Second Affiliated Hospital of Soochow University Suzhou Jiangsu China

2. Department of Orthopaedics The Second Affiliated Hospital of Nantong University Nantong Jiangsu China

Abstract

AbstractAfter peripheral nervous system injury, Schwann cells (SCs) can repair axons by providing a growth‐promoting microenvironment. The aim of this study is to explore the effects and mechanisms of LKB1 and CRMP1 on the repair of sciatic nerve injury (SNI). The expressions of LKB1 and CRMP1 were changed in rats with SNI from 12 h to 4 weeks by hematoxylin–eosin staining, RT‐PCR assay, immunohistochemical staining, and western blotting. Immunofluorescence results show that LKB1 and CRMP1 are co‐localized in the regenerated axons of the sciatic nerve tissue of SNI rats. Co‐immunoprecipitation indicates that LKB1 interacts with CRMP1. LKB1 interference suppresses the phosphorylation level of CRMP1. Overexpression of LKB1 and CRMP1 promotes the invasion and migration of SCs, and nerve cell protuberance extends. The structure of the myelin sheath in the sciatic nerve of the model group was found to be loose and disordered. Rats in the model group had higher pain thresholds and heat sensitivity response times than those in the control group. Nerve conduction velocity, the latency of action potential, and the peak value of compound muscle action potential in the SNI group were significantly lower than those in the control group, and the muscle atrophy was severe. Overexpression of LKB1 may significantly improve the above conditions. However, the function of LKB1 to improve SNI is abolished by the interference of CRMP1. In summary, the interaction between LKB1 and CRMP promotes the migration and differentiation of SCs and the extension of neurons, thereby improving the repair of nerve injury.

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3