Pregestational fructose‐induced metabolic syndrome in Wistar rats causes sexually dimorphic behavioral changes in their offspring

Author:

Cuervo Sánchez Marié L.1,Prado Spalm Facundo H.1,Furland Natalia E.1,Vallés Ana S.1

Affiliation:

1. Nutrition and Neurodevelopmental Laboratory INIBIBB‐CONICET‐UNS Bahía Blanca Argentina

Abstract

AbstractMetabolic syndrome (MetS), marked by enduring metabolic inflammation, has detrimental effects on cognitive performance and brain structure, influencing behavior. This study aimed to investigate whether maternal MetS could negatively impact the neurodevelopment and metabolism of offspring. To test this hypothesis, 2 months old female Wistar rats were subjected to a 10‐week regimen of tap water alone or supplemented with 20% fructose to induce MetS. Dams were mated with healthy males to generate litters: OC (offspring from control dams) and OMetS (offspring from dams with MetS). To isolate prenatal effects, all pups were breastfed by control nurse dams, maintaining a standard diet and water ad libitum until weaning. Behavioral assessments were conducted between postnatal days (PN) 22 and 95, and metabolic parameters were analyzed post‐sacrifice on PN100. Results from the elevated plus maze, the open field, and the marble burying tests revealed a heightened anxiety‐like phenotype in OMetS females. The novel object recognition test showed that exclusively OMetS males had long‐term memory impairment. In the reciprocal social interaction test, OMetS displayed a lower number of social interactions, with a notable increase in “socially inactive” behavior observed exclusively in females. Additionally, in the three‐chamber test, social preference and social novelty indexes were found to be lower solely among OMetS females. An increase in visceral fat concomitantly with hypertriglyceridemia was the relevant postmortem metabolic finding in OMetS females. In summary, maternal MetS leads to enduring damage and adverse effects on offspring neurobehavior and metabolism, with notable sexual dimorphism.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3