KLF2 inhibits colorectal cancer progression and metastasis by inducing ferroptosis via the PI3K/AKT signaling pathway

Author:

Li Jia1,Jiang Ji Ling1,Chen Yi Mei2,Lu Wei Qi3

Affiliation:

1. Department of General Surgery Shenzhen Traditional Chinese Medicine Hospital Shenzhen PR China

2. Department of Breast Surgery Shenzhen Women & Children's Health Care Hospital Shenzhen PR China

3. Department of Gastrointestinal Surgery First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou PR China

Abstract

AbstractKrüppel‐like factor 2 (KLF2) belongs to the zinc finger family and is thought to be a tumor suppressor gene due to its low expression in various cancer types. However, its functional role and molecular pathway involvement in colorectal cancer (CRC) are not well defined. Herein, we investigated the potential mechanism of KLF2 in CRC cell invasion, migration, and epithelial–mesenchymal transition (EMT). We utilized the TCGA and GEPIA databases to analyze the expression of KLF2 in CRC patients and its correlation with different CRC stages and CRC prognosis. RT‐PCR, western blot, and immunohistochemistry assays were used to measure KLF2 expression. Gain‐of‐function assays were performed to evaluate the role of KLF2 in CRC progression. Moreover, mechanistic experiments were conducted to investigate the molecular mechanism and involved signaling pathways regulated by KLF2. Additionally, we also conducted a xenograft tumor assay to evaluate the role of KLF2 in tumorigenesis. KLF2 expression was low in CRC patient tissues and cell lines, and low expression of KLF2 was associated with poor CRC prognosis. Remarkably, overexpressing KLF2 significantly inhibited the invasion, migration, and EMT capabilities of CRC cells, and tumor growth in xenografts. Mechanistically, KLF2 overexpression induced ferroptosis in CRC cells by regulating glutathione peroxidase 4 expression. Moreover, this KLF2‐dependent ferroptosis in CRC cells was mediated by inhibiting the PI3K/AKT signaling pathway that resulted in the suppression of invasion, migration, and EMT of CRC cells. We report for the first time that KLF2 acts as a tumor suppressor in CRC by inducing ferroptosis via inhibiting the PI3K/AKT signaling pathway, thus providing a new direction for CRC prognosis assessment and targeted therapy.

Publisher

Wiley

Subject

Pathology and Forensic Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3