Purification of dredged water by magnetic coagulation: Response surface optimization and dissolved organic matter removal characteristics

Author:

Xiao Yuanting1,Feng Jingwei1ORCID,Zhang Liu2,Yang Yulin1,Zhou Xuyang1,Xu Deqian1,Gong Miao1,Yin Hao34,Yuan Shoujun1

Affiliation:

1. Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering Hefei University of Technology Hefei China

2. Anhui Provincial Academy of Eco‐Environmental Science Research Hefei China

3. CAS Key Laboratory of Crust‐Mantle Materials and the Environments, School of Earth and Space Sciences University of Science and Technology of China Hefei China

4. Mass Spectrometry Lab, Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China Hefei China

Abstract

AbstractIn the present study, magnetic coagulation was used to treat dredged water and the response surface method was used to optimize process parameters. The dissolved organic matter (DOM) removal characteristics were characterized by three‐dimensional fluorescence spectrometry and ultra‐high resolution mass spectrometry. During the magnetic coagulation process, the suspended solids (SS) removal rate increased initially and then decreased under conditions of increasing magnetic powder dosage and stirring rate. After magnetic coagulation and precipitation for 20 min, the contents of SS, ammonia nitrogen, chemical oxygen demand, and total phosphorus in the treated dredged water met the requirements of the discharge standard (GB8978–1996, China). Three‐dimensional fluorescence results showed that magnetic coagulation selectively removed fulvic acids and humic acid substances. After magnetic coagulation with precipitation for 10 min and 20 min, the total relative content of lignins, tannins, proteins, lipids, aminosugars, unsaturated hydrocarbons, condensed aromatic structures, and carbohydrates decreased by 26.3% and 39.4%, respectively. After magnetic coagulation, the distribution range of small molecule DOM shifted to the low H/C and high O/C regions. This study provides a novel perspective for studies on the removal of DOM in dredged water by magnetic coagulation.Practitioner Points SS and DOM removal were significantly enhanced by the use of magnetic coagulation. SS removal efficiency was affected by stirring rate and magnetic powder dosage. Magnetic coagulation selectively removed fulvic acids and humic acid substances. DOM molecule shifted to low H/C and high O/C regions after magnetic coagulation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3